library(forecast)
Registered S3 method overwritten by 'quantmod':
method from
as.zoo.data.frame zoo
김보람
November 3, 2023
해당 자료는 전북대학교 이영미 교수님 2023고급시계열분석 자료임
-
\(Z_t = δ + ϕ_1Z_{t−1} + ⋯ + ϕ_pZ_{t−p} + ϵ_t, ϵ_t ∼ WN(0, σ^2)\)
\(E(Z_t) = \mu | Z_t - \mu = ϕ_1(Z_{t-1} - \mu) + \dots + ϕ_p(Z_{t-p} - \mu) + \epsilon\)
\(\delta = (1 - ϕ_1 - \dots - ϕ_p) \mu\)
-
\(AR(p)\) 과정을 따르는 데이터 생성하기
sim_ar <- function(n, mu, phi){
### n : sample size
### mu : mean
### phi : p-dim coefficients
p <- length(phi)
z <- rnorm(n+100) #epsilon ~ WN(0, sigma^2), iid N(0,1)
delta <- (1-sum(phi))*mu
for (k in (length(phi)+1):(n+100)){
z[k] <- delta + sum(z[(k-1):(k-p)]*phi) + rnorm(1)
}
return(z[-(1:100)])
}
-
\(AR(1) : Z_t = 0.5Z_{t−1} + ϵ_t\)
-
arima.sim 함수 사용
##AR(1) phi=0.5
z <- arima.sim(n=100, ##order=c(p,d,q) ARMA : d=0, AR : d=q=0
list(order=c(1,0,0), ar= 0.5), #ar=ϕ1
rand.gen = rnorm,
sd = sqrt(1)) #분산
forecast::tsdisplay(z, lag.max=24)
-
\(AR(2) : Z_t = 0.5Z_{t−1} − 0.4Z_{t−2} + ϵ_t\)
-
\(Z_t − μ = ε_t − θ_1ε_{t−1} − ⋯ − θ_qε_{t−q}, ε_t ∼ WN(0, σ^2)\)
-
\(Z_t = ε_t − 0.9ε_{t−1}\)
z <- arima.sim(n=100, #ARMA : d=0, MA : p=d=0
list(order=c(0,0,1), ma= -0.9),
rand.gen = rnorm)
# z <- arima.sim(n=100, list(ma= 0.9), rand.gen = rnorm)
forecast::tsdisplay(z, lag.max=24)
-
\(Z_t = ε_t − 0.5ε_{t−1} + 0.2ε_{t−2}\)
-
\(Z_t = δ + ϕ_1Z_{t−1} + ⋯ + ϕ_pZ_{t−p} + ε_t − θ_1ε_{t−1} − ⋯θ_qε_{t−q}, ε_t ∼ WN(0, σ^2)\)
-
\(ARMA(1,1): Z_t = -0.5Z_{t-1} + \epsilon_t - 0.3 \epsilon_{t-1}, \epsilon_t \sim WN(0,1)\)